销售热线
控制与数据采集系统
高压气加压泵站
高压水加压泵站
液压油源
图2 控制子系统与部件图
如上所述,控制与数据采集系统需要同时具备模拟量输入和输出(AI和AO)、数字量输入和输出(DI和DO)以及多物理量数据采集通道。复合挤毁试验载荷大、压力高,试验危险性强,要求控制与数据采集系统安装位置尽量远离危险源且工作稳定性高。 考虑到上述因素,在系统搭建中采用基于NI PXI-E平台的集中式控制与数据采集方式。将控制与数据采集系统的所有硬件安装在一台现场主控制柜中。控制柜位于试验地坑角落中,距离试样8米左右。主控制柜中的PXIe-1082 8槽3U机箱通过PXIe-8375x4和PCIe-8375x4 MIX卡连接30米光纤与控制室内的工业控制计算机通讯,实现远程操控。这种架构方式有以下三个优点: (1)试验过程中人员安全性高。试验中操作人员处于控制室中,与试样直线距离超过20米。 (2)保证系统硬件安全。控制与数据采集系统的所有硬件安装在现场主控制柜中。与分布式控制与数据采集方式相比,虽然增加了主控制柜内接线工作量,但减少了软件接口,同时降低了因执行机构失控造成系统硬件损坏的概率。 (3)数据稳定性提高。试验中多数传感器安装在试样上,如果数据采集系统距离试样太远,传感器连接导线过长,干扰和噪音会影响信号质量。特别是试验机液压油源中配有大功率电机和变频器,多个传感器反馈信号为毫伏级电压,更会加剧长导线的影响。因此,主控制柜必须放置在试验地坑中而不是控制室内。而主控制柜中的PXIe机箱通过MIX通讯卡和光纤与控制室内的工业控制计算机连接,数据传输速度快且稳定性高。 除去上述优点,这种架构方式唯一需要注意的是MIX通讯卡与工业控制计算机的兼容性。 板卡选择中,仅选用以下4种6块板卡即可满足系统控制和数据采集通道需求: PXIe-6363 X系列多功能卡1块。这块板卡功能强大,带有32路正负10 伏模拟输入,4路正负10伏模拟输出,48路5伏数字I/O和4路32位计数器。系统中使用正负10伏模拟输入功能接入所有执行子系统监控传感器信号,使用正负10伏模拟输出控制液压油源、高压水加压泵站和高压气加压泵站中的气控调压阀等执行元件。5伏数字I/O和32位计数器功能未使用。 PXI-6515数字I/O卡1块。这是一块32通道24伏工业数字I/O卡,它的数字输出功能用来控制所有中间继电器通断,根据试验步骤开启或关闭电机、泵及所有阀件;数字输入功能收集油滤、紧急停止按钮的状态信号。 PXIe-4330应变与桥路传感器数据采集卡3块。该数据采集卡集传感器供电与信号调理、采集于一体,能为传感器提供0.625伏到10伏的供电。这一供电范围涵盖了应变采集常用的2伏和3.3伏以及高精度压力传感器常用的10伏,使系统无须再为传感器另配线性电源。3块采集卡中的1块8个通道用来采集液压缸两腔压力和试样内压及外压,同时为外接位移传感器和力传感器预留通道。剩余2块采集卡实现16通道1/4桥应变高速同步采集(采样频率最高达25kHz)。 PXIe-4353热电偶数据采集卡1块。这块采集卡含有32个采集通道,其中8个通道内置冷端补偿。采集卡支持J、K、T、E、N、B、R和S共8个类型的热电偶,涵盖了石油管试验中常用的J、K两种类型热电偶。试验中试样温度变化较慢,因此最高90Hz的采样频率也足以满足使用需求。 四、软件实现与现场成果 软件编写中,充分利用了LabVIEW 2011 软件开发平台的并行处理特长,令以下三个循环同时运行: (1)液压油源、高压水加压泵站、高压气加压泵站控制与多物理量数据采集循环; (2)前面板操作响应循环; (3)界面显示与刷新循环; 软件源代码如图3所示。 图3 LabVIEW软件源代码 其中,液压油源、高压水加压泵站、高压气加压泵站的控制程序同样并行运行,保证执行机构能够同时给试样施加轴向载荷、侧向弯曲以及内压和外压。 软件主界面如图4所示。进入软件主界面后,系统自动检测板卡状态。这部分功能利用板卡驱动编写。如果板卡状态异常则锁定界面,使后续操作无法完成,保证试验安全。 图4 软件主界面 其后开始试验参数配置。配置过程包括输入试样信息、传感器配置、载荷步骤设置(如图5)、应变与热电偶采集配置等。每完成一步配置,点击下一步,直到配置完成。这种锁定的顺序过程可以避免因某步信息未输入而默认使用上次试验配置的情况。 图5 载荷步骤设置 试验参数配置完成后,点击软件主界面上的“开始”按钮,此时弹出窗口,要求操作人员输入存盘路径和文件名,保存数据文件和配置文件,便于数据回放和下次调用。开始试验后,弹出液压系统、高压水加压系统、高压气加压系统监控界面,如图6至图8所示。界面上包含所有执行元件的启停开关与工作状态,以及监控传感器的反馈值,替代了硬件指示灯、按钮以及传统的二次仪表。 图6 液压系统监控界面 图7 高压水加压系统监控界面 图8 高压气加压系统监控界面 试验结束后进入数据回放界面(图9),能够查看试验数据并完成简单的数据分析和导出。 图9 数据回放界面 PXIe-1082 8槽3U机箱在现场主控制柜内的安装如图10和图11所示。考虑到机箱发热较大,将其安装在主控制柜顶部,并且在控制柜侧板安装外挂式空调。 图10 现场主控制柜实拍图片 图11 PXIe-1082机箱在主控制柜内安装图 五、总结 使用NI PXI-E平台完成了石油管复合挤毁试验机的控制与数据采集系统搭建。硬件方面充分利用NI板卡的多种功能,用尽可能少的板卡搭建集中式控制与数据采集系统,满足系统整体稳定性要求。软件方面,利用LabVIEW 2011 软件开发平台的并行处理特长,完成多物理量并行闭环控制和数据同步采集。 这一基于NI PXI-E平台的集中式控制与数据采集系统作为试验机的心脏,强有力的支撑着石油管复合挤毁试验机稳定、高效运转。同时,这一应用方案在石油装备领域具有示范意义,有助于NI PXI-E平台在石油行业的推广。粮食作为我国重要的战略资源,由于其生产的季节性,因此粮食的存储是关系到国计民生的大事,粮库的自动化监控有利于提高粮库的运行水平,减少粮食在存储过程中的损耗,降低劳动强度。 一个完整的粮库计
本项目为天津用电安全管理系统建设项目,安全用电管理云平台通过物联网技术对电气引发火灾的主要因素(线缆温度、电流、电压和漏电流)进行不间断的数据跟踪与统计分析,实时发现电气线路和用电设备存在的安全隐患(
技术参数 1)采用32位Contex-M3的MCU,性能稳定,抗干扰强,内部资源丰富; 2)带128x64点阵屏,带RS232-USB接口,方便调试使用; 3)直流24V输入; 4)采用半桥驱动芯片
中达电通股份有限公司李铁成Li Tiecheng 摘 要: 讨论Modbus协议环境下台达DOP系列人机界面的异构系统集成技术。以台达DOP系列人机界面做为主站和做为从站的两种不同架构案例,
实验名称:基于压电陶瓷的声光模式转换实验研究方向:光纤模式实验内容:用高频高压信号驱动压电陶瓷振动光纤产生模式转换测试目的:利用功率放大器对驱动电压的放大实现压电陶瓷的高效率振动测试设备:压电陶瓷放
随着经济的发展和社会进步,数据服务成为智慧公安建设的一大特色,基于视频的指挥调度系统正在公安领域不断完善和普及,警情处置的可视化联动、扁平化指挥等新的警务模式有利于警务效能倍增。智慧型公安智慧调度
一、行业背景长江正源沱沱河的冰川、雪山融水与长江南源当曲汇合后通天河,通天河宽达数公里的瓣壮河道流淌100公里后,为冬布里山阻挡;宽阔的水面收为一束,切开冬布里山的岩石,形成万里长江第一峡也称牙哥峡
一、引言,背景描述XX集团,全称XXXX工业集团股份有限公司,是一家专业生产汽车安全玻璃和工业技术玻璃的中外合资企业;是国内最具规模、技术水平最高、出口量最大的汽车玻璃生产供应商。 钢化玻璃生产工艺